
	

	

Protocol Extension for Low-
Latency HLS (Preliminary
Specification)
This is the preliminary specification and implementation guide
for adding Low-Latency HLS to your streams.

On This Page

• Overview
• See Also

Overview
The HTTP Live Streaming (HLS) protocol delivers live and on-demand content
streams to global-scale audiences. HLS has historically favored stream reliability
over latency. Low-Latency HLS extends the protocol to enable low-latency video
streaming while maintaining the same degree of scalability. The new low-latency
mode lowers video latencies over public networks into the range of standard
television broadcasts.

Backend production tools and content delivery systems must implement new rules
to enable low-latency stream playback. This document outlines Low-Latency HLS
functionality and the requirements for producing and delivering Low-Latency HLS
streams. It also provides examples of Low-Latency HLS playlists.

New Functionality
Low-Latency HLS is an extension of the existing HLS protocol documented in RFC
8216 and draft-pantos-hls-rfc8216bis. As detailed in the sections that follow, Low-
Latency HLS offers new functionality in these areas:

• Generation of Partial Segments
• Playlist Delta Updates
• Blocking of playlist reload
• Preload hints and blocking of Media downloads
• Rendition Reports

The Server Configuration Profile Requirements section describes the server
configuration profile that distribution systems must support in order to engage the

	

	

low-latency playback mode. A server indicates compatibility with the low-latency
mode with a new Media Playlist tag, EXT-X-SERVER-CONTROL.

Generation of Partial Media Segments
Low-Latency HLS provides a parallel channel for distributing media at the live edge
of the Media Playlist, where the media is divided into a larger number of smaller
files, such as CMAF Chunks. These smaller files are called HLS Partial Segments.
Because each Partial Segment has a short duration, it can be packaged, published,
and added to the Media Playlist much earlier than its Parent Segment. While regular
Media Segments might be 6s each, an example Partial Segment might be only
200ms. A first Partial Segment might be published only 200ms after the previous
segment has been published, followed by 29 of its peers, followed at last by a
regular 6s Media Segment. This Media Segment contains the same media as the
concatenation of its 30 Partial Segments. In order to reduce playlist bloat, Partial
Segments are removed from the Media Playlist once they are greater (older) than 3
target durations from the live edge.

You add Partial Segments to the Media Playlist using the new EXT-X-PART tag.
You may use other Media Segment Tags (such as EXT-X-DISCONTINUITY) only
at segment boundaries, not between Partial Segments.

A Partial Segment must be in one of the Supported Media Segment Formats
described by the HLS specification (sections 3.1 through 3.5).

Playlist Delta Updates
Playlists are transferred more frequently with Low-Latency HLS. Clients can request
and servers can provide Playlist Delta Updates to reduce the transfer cost. These
updates replace a considerable portion of the Playlist that the client already has with
the new EXT-X-SKIP tag.

Blocking of Playlist Reload
To support efficient client notification of new Media Segments and Partial
Segments, Low-Latency HLS introduces the ability to block a playlist reload
request. When a client issues an HTTP GET to request a Media Playlist update, it
can add query parameters to specify that it wants the playlist response to include a
future segment. It is the responsibility of the server to hold onto the request (block)
until a version of the playlist that contains that segment is available. (The client can
also ask the server to push the indicated segment to the client along with the
playlist response.) Blocking playlist reload eliminates polling. (Server push eliminates
request round trips.)

Deleted: automatically

Deleted: contain

Formatted: Strikethrough

Formatted: Strikethrough

	

	

Preload Hints and Blocking of Media Downloads

Eliminating unnecessary round trips is critical when delivering low-latency streams
at global scale. Servers use a new tag, EXT-X-PRELOAD-HINT, to inform clients of
upcoming Partial Segments and Media Initialization Sections. A client can issue a
GET request for a hinted resource in advance; the server responds to the request as
soon as the media becomes available.

Rendition Reports
When playing at low latency, the client must be able to switch renditions with a
minimum number of round trips in order to perform bit-rate adaptation. To support
this, the server must add Rendition Reports on the other renditions in the Master
Playlist to each Media Playlist. A Rendition Report is carried in the EXT-X-
RENDITION-REPORT tag and provides information such as the last Media
Sequence Number and Part currently in the Media Playlist of that rendition.

Playlist Request Query Parameters for Low-
Latency HLS
Clients must ensure that all query parameters of the URL of a GET request for a
low-latency playlist appear in UTF-8 order within the URL. This increases CDN
cache utilization. You can use the following new query parameters with Low-
Latency HLS:

• _HLS_msn=<N>: Indicates that the server must hold the request until a
playlist contains a Media Segment with Media Sequence Number of N or
later. The server must deliver the entire playlist, even if the requested Media
Segment is not the last in the playlist, or in fact if it is no longer in the playlist.

• _HLS_part=<M>: Use in combination with _HLS_msn to indicate that the
server must hold the request until a playlist contains Partial Segment M of
Media Sequence Number of N or later. The first Partial Segment of a segment
is _HLS_part=0, the second is _HLS_part=1, and so on.
The _HLS_part parameter requires an _HLS_msn parameter.

If the client asks for a Partial Segment number greater than the final part of a
segment, the server must deliver a playlist containing the first Partial Segment of the
following segment.

If a client supplies an _HLS_msn parameter greater than the Media Sequence
Number of the last segment in the current Playlist plus 2, or if it supplies
an _HLS_part parameter that exceeds the last Partial Segment in the current
playlist by the Advance Part Limit, then the server should immediately return 400.

Deleted: When a
Deleted: s
Deleted: a hinted resource
Deleted: ,
Deleted: must hold onto
Deleted: until
Deleted: the entire response can be delivered to the
client at link speed. This enables the client to perform
accurate Adaptive Bit Rate (ABR) measurements.

	

	

The Advance Part Limit is 3 divided by the PART-TARGET if the PART-TARGET is
less than 1 second, or 3 otherwise.

_HLS_msn and _HLS_part do not trigger blocking if the playlist contains
an EXT-X-ENDLISTtag.

A 3x target duration timeout is recommended for blocking requests, after which the
server should return 503.

• (_HLS_push=<0/1>: Indicates whether the server must push the awaited
Partial Segment along with the playlist response. 1 means push, 0 means
don’t push. The absence of an_HLS_push parameter is equivalent
to _HLS_push=0.)

• _HLS_skip=YES: Requests a Playlist Delta Update, in which the earlier
portion of the playlist is replaced with an EXT-X-SKIP tag. The server must
ignore this parameter if the playlist contains an EXT-X-ENDLIST tag.

New Media Playlist Tags for Low-Latency HLS
Use the following playlist tags when you implement Low-Latency HLS.

EXT-X-SERVER-CONTROL:<attribute-list>
EXT-X-SERVER-CONTROL allows the server to indicate support for features such
as Blocking Playlist Reload and Playlist Delta Updates. This tag is required when
you implement Low-Latency HLS.

All low-latency Media Playlists must carry this tag with the same attributes and
values. The attribute list can consist of the following attributes:

• CAN-BLOCK-RELOAD=YES: Indicates that the server supports processing
the _HLS_msn and _HLS_part parameters, blocking requests for hinted
resources, and the publishing of Rendition Reports. It is mandatory for Low-
Latency HLS.

• CAN-SKIP-UNTIL=<seconds>: (optional) Indicates that the server can
produce Playlist Delta Updates in response to
the _HLS_skip=YES parameter. Its value is the Skip Boundary, as a
floating-point number of seconds. Segments and their associated tags that
are further from the live edge than the Skip Boundary can be replaced by
an EXT-X-SKIP tag in a Playlist Delta Update. The Skip Boundary must be
at least 6 times the EXT-X-TARGETDURATION. You can use this attribute in
low-latency and regular HLS playlists.

• HOLD-BACK=<seconds>: (optional) Indicates the server-recommended
minimum distance from the live edge at which clients should begin to play or
to which they should seek when NOT playing in low-latency mode (that is,

Formatted: Strikethrough

Deleted: ,
Deleted: , and _HLS_push

	

	

conventional HLS). Its value is a floating-point number of seconds and must
be at least 3 times the EXT-X-TARGETDURATION.

• PART-HOLD-BACK=<seconds>: Indicates the server-recommended hold-
back time when playing in low-latency mode. It is mandatory if the Playlist
contains EXT-X-PART tags. Its value is a floating-point number of seconds
and must be at least PART-TARGET. The recommended time is at least 3
x PART-TARGET.

EXT-X-PART-INF:<attribute-list>
EXT-X-PART-INF provides information about HLS Partial Segments in the
playlist. It is required if a playlist contains one or more EXT-X-PART tags. The
attribute list consists of the following attribute:

• PART-TARGET=<s>: (mandatory) Indicates the part target duration in
floating-point seconds and is the maximum duration of any Partial Segment.

All Partial Segments except the last part of a segment must have a duration of at
least 85% of PART-TARGET. The server must add a new Partial Segment to the
Playlist every part target duration.

EXT-X-PART:<attribute-list>
EXT-X-PART identifies a Partial Segment in the playlist.

The set of EXT-X-PART tags between EXTINF tags must represent the same set
of media as the Media Segment of the following EXTINF tag. The Media Segment
containing the same media as a set of Partial Segments is called the Parent
Segment of those Partial Segments.

A Partial Segment must be completely available for download at the full speed of
the link to the client at the time it is added to the playlist.

All Media Segment tags except for EXT-X-DATERANGE, EXT-X-BYTERANGE,
and EXT-X-GAP that are applied to a Parent Segment must appear before the
first EXT-X-PART tag of the Parent Segment. These tags include EXT-X-
MAP, EXT-X-DISCONTINUITY, and EXT-X-KEY.

Remove EXT-X-PART tags from the playlist after they are greater than 3 target
durations from the end of the playlist. Partial Segments are primarily useful for
navigating close to the live edge, after which their presence does not justify the
increase in the playlist size and the responsibility of retaining the parallel Partial
Segment stream on the server. The attribute list can consist of the following
attributes:

Deleted: PART-HOLD-BACK

Deleted: with the exception of
Deleted:

	

	

• DURATION=<s>: (mandatory) Indicates the duration of the Partial Segment
in floating-point seconds.

• URI=<url>: (mandatory) Indicates the URI for the Partial Segment.
• INDEPENDENT=YES: Indicates that the Partial Segment contains an

independent frame. It is mandatory for such Partial Segments, unless every
Partial Segment contains an independent frame.

• BYTERANGE=<n>[@<o>]: Indicates that the Partial Segment is a subrange
of the resource specified by the URI attribute. It is mandatory for such Partial
Segments.

• GAP=YES: Indicates that the Partial Segment is not available. It is mandatory
for such Partial Segments. The rules that apply to a Media Segment with
an EXT-X-GAP tag applied to it also apply to Partial Segments with
a GAP=YES attribute. A Parent Segment must have an EXT-X-GAP tag
applied to it if one or more of its Partial Segments have a GAP=YES attribute.
The EXT-X-GAP tag should appear immediately after the first EXT-X-
PART tag in the Parent Segment with a GAP=YES attribute.

EXT-X-PRELOAD-HINT:<attribute-list>
The EXT-X-PRELOAD-HINT tag is used to hint that a resource or a byte range
of a resource will be needed to play back an upcoming part of the presentation. The
hinted resource must be available for request when the EXT-X-PRELOAD-HINT
tag is added to the Playlist.

The server must not transmit any range of a Partial Segment from a hinted resource
until an EXT-X-PART tag specifying that range is added to the Playlist. This enables
the client to perform accurate Adaptive Bit Rate (ABR) measurements.

The server should respond with 404 if it receives a request for a resource which
cannot be found by the server and is not specified by an EXT-X-PRELOAD-HINT
tag in an active (i.e. live) Media Playlist.

The attribute list can consist of the following attributes:
• TYPE=<hint-type>: (mandatory) Specifies the type of the hinted resource. If

hint-type is PART, the resource is an upcoming Partial Segment. If hint-type
is MAP, the resource is an upcoming Media Initialization Section.

• URI=<uri>: (mandatory) Specifies the hinted resource. It must match the
URI string that will be subsequently added to the playlist as a non-hinted
resource (for example as part of an EXT-X-PART tag). The URI may be
relative to the URI of the Playlist or it may be absolute. The hostname may or
may not match.

Deleted: The server must not transmit the hinted
resource until the entire response can be sent at link
speed.

Formatted: Font:(Default) Helvetica Neue, Condensed by
0.25 pt

	

	

• BYTERANGE-START=<n>: Indicates that the requested resource begins at a
particular byte offset from the beginning of the resource identified by the URI
attribute. Its absence implies a value of 0.

• BYTERANGE-LENGTH=<n>: Indicates the length of the requested resource,
which may be less than the length of the resource identified by the URI
attribute. Its absence indicates that the specified range extends from the start
offset to the end of the resource identified by the URI attribute.

Note that when a hinted Partial Segment eventually appears in the Playlist as an
EXT-X-PART tag, it may have a different Discontinuity Sequence Number, a
different Media Initialization Section, and/or a different encryption configuration than
the previous Partial Segment. In other words, it can be preceded by an EXTINF tag
indicating the end of the previous Parent Segment and an EXT-X-DISCONTINUITY,
EXT-X-MAP, and/or EXT-X-KEY tag.

If the Playlist contains EXT-X-PART tags and does not contain an EXT-X-ENDLIST
tag, the Playlist must contain an EXT-X-PRELOAD-HINT tag with a TYPE=PART
attribute to hint the URI of the next EXT-X-PART tag that is expected to be added to
the Playlist (and its byte range, if applicable). Upon reading such a Playlist a client
with sufficient space in its download pipeline that is not already loading the hinted
resource should issue a GET request for it. This will typically be issued at the same
time as its GET request for the next Playlist update.

If the hinted Partial Segment specified by the TYPE=PART EXT-X-PRELOAD-HINT
tag has a different Media Initialization Section than the last Partial Segment in the
Playlist, the Playlist must also contain an EXT-X-PRELOAD-HINT tag with a
TYPE=MAP attribute that identifies the Media Initialization Section of the hinted
Partial Segment. A client with sufficient space in its download pipeline that has not
already cached the hinted Media Initialization Section should issue a GET request
for it.

Servers should not add more than one EXT-X-PRELOAD-HINT tag with the same
TYPE attribute to a Playlist. Clients should ignore all but the first EXT-X-PRELOAD-
HINT tag with a particular TYPE attribute in a Playlist. Clients must ignore EXT-X-
PRELOAD-HINT tags with unrecognized TYPE attributes.

A server may choose not to publish a previously-hinted Partial Segment if planned
segmentation changes, such as the case of early return from an ad. It should
respond to client requests for that Partial Segment with a 404.

Formatted: None, Space Before: 0 pt

Formatted: None, Space Before: 0 pt

	

	

A client should abandon the download of a hinted resource if it does not appear in a
subsequent Playlist update, either as in EXT-X-PRELOAD-HINT tag or as part of
another tag such as EXT-X-PART. It should ignore the result code of such a GET
request.

If a Partial Segment is created as a sub-range of a larger resource and its length is
not known at the time that its hint is added to the Playlist, the BYTERANGE-
LENGTH attribute should be omitted. The BYTERANGE-OFFSET of its hint should
indicate its starting offset into the larger resource. This will signal the client to issue
a download request from the start of the hinted Partial Segment to the end of the
resource.

A client should recognize when a Partial Segment indicated by an EXT-X-PART tag
is a sub-range of a hint download and obtain the Partial Segment from the hint
download. Clients must recognize contiguous ranges between existing Partial
Segments and Partial Segment hints and avoid duplicate downloads.

A server should not hint a range that it does not expect to be downloaded by clients
in the near term.

EXT-X-RENDITION-REPORT:<attribute-list>
EXT-X-RENDITION-REPORT carries information about an associated rendition
that is as up-to-date as the playlist that contains it.

The server must add one EXT-RENDITION-REPORT tag for each Media Playlist
(Rendition) in the Master Playlist, except for the Media Playlist to which the EXT-X-
RENDITION-REPORT tag is being added and Playlists which contain the EXT-X-
I-FRAMES-ONLY tag. The attribute list can consist of the following attributes:

• URI=<uri>: (mandatory) Indicates the Media Playlist described in the
report. It should be the same string as the report query parameter.

• LAST-MSN=<N>: (mandatory) Indicates the Media Sequence Number of the
last segment currently in the specified rendition. If the rendition contains
Partial Segments then this value is the Media Sequence Number of the
segment containing the last Partial Segment.

• LAST-PART=<M>: Indicates the last part of the segment specified by the
media sequence number currently in the specified rendition. It is mandatory if
the associated playlist contains EXT-X-PART tags.

A server may omit adding an attribute to an EXT-X-RENDITION-REPORT tag —
even a mandatory attribute — if its value is the same as that of the Rendition Report

Formatted: Font:(Asian) +Theme Body Asian (ＭＳ 明朝明朝),
13 pt, Condensed by 0.25 pt

	

	

of the Media Playlist to which the EXT-X-RENDITION-REPORT tag is being
added. This will reduce the size of the Rendition Report.

Currently the prototype tools also generate LAST-I-MSN and LAST-I-
PART parameters to indicate the MSN and part of the last independent part. But
these may not make it into the specification because they are currently unused.

EXT-X-SKIP:<attribute-list>
When a server issues a Playlist Delta Update, it replaces Media Segments earlier
than the Skip Boundary and their associated tags with an EXT-X-SKIP tag.

The EXT-X-SKIP tag replaces segment URI lines and all of the following tags that
are applied to those segments: EXTINF, EXT-X-BYTERANGE, EXT-X-
DISCONTINUITY, EXT-X-KEY, EXT-X-MAP, EXT-X-PROGRAM-DATE-
TIME, EXT-X-GAP, and EXT-X-BITRATE. All other tags must remain in the
Playlist Delta Update. The attribute list can consist of the following attributes:

• SKIPPED-SEGMENTS=<N>: (mandatory) Indicates how many Media
Segments were replaced by the EXT-X-SKIP tag, along with their
associated tags.

If a client receives a playlist containing an EXT-X-SKIP tag and discovers that it
does not already have all of the information that was skipped, it must obtain a
complete copy of the playlist by reissuing its playlist request without
the _HLS_skip=YES parameter.

A playlist containing an EXT-X-SKIP tag must have an EXT-X-VERSION tag with
a value of 9 or higher.

Server Configuration Profile Requirements
To support timely delivery of media, Low-Latency HLS requires certain transport
features above and beyond what is necessary for regular HLS. Clients must verify
that these features are in place before engaging low-latency mode. Because the
Low-Latency HLS syntax is backward-compatible with existing HLS, clients will fall
back to regular-latency HLS playback if they discover that the server does not
support an aspect of the required configuration.

You must serve Low-Latency HLS streams via HTTP/2 because efficient delivery
requires HTTP/2 features such as multistream control and Ping requests. Servers
must support H2 priority control (dependencies and weights). TCP is
recommended, and there is no commitment to support QUIC in the first release.
Each server must offer the entire set of tiers in the master playlist. This allows rapid
tier switching without connection reestablishment. Servers must support HTTP

Deleted: they
Deleted: several
Deleted: :
Deleted: , H2 Push,
Deleted: H2

Deleted:

	

	

Range requests if Media Playlists contain BYTERANGE, BYTERANGE-START or
BYTERANGE-LENGTH attributes.

TCP implementations must support Selective Acknowledgment (SACK) across the
entire route from client to server. You should also set Explicit Congestion
Notification (ECN) during congestion, and use TCP timestamps, TAIL LOSS probe,
and TCP RACK. These additions improve the performance of TCP loss recovery.
See RFC 2018, RFC 3168, RFC 7323, and IETF draft-ietf-tcpm-rack for more
information about these TCP options.

Playlist requests must be idempotent. Servers should support TLS 1.3 or higher to
reduce connection time. Servers should also support TLS 1.3 0-RTT connections
for Media Playlists and Media Segments.

Playlists (but not segments) must be in GZIP format. This speeds up Media Playlist
reload and rendition switching.

CDNs and proxy caches must recognize client playlist requests and blocking media
requests that match an existing request that is currently outstanding to the origin,
and must hold the duplicate requests until the origin responds to the existing
request. This is more critical in Low-Latency HLS due to its requirements for an
active origin. CDNs have different names for this feature; for example, Apache
Traffic Server calls it reader-while-writer.

Low-Latency HLS allows longer caching of playlists without detriment to clients. It is
recommended that you cache successful playlist requests and responses with Low-
Latency HLS query parameters for 6 target durations, and cache unsuccessful
requests/responses (such as 404s) for 4 target durations. (It is recommended that
you cache successful responses to playlist requests that don’t contain
the _HLS_msn query parameter for 0.5 target duration and unsuccessful responses
for 1 target duration.) It is recommended that unsuccessful responses to blocking
media requests be cached for one target duration.

Origins should use cache-control headers to indicate the desired cache lifetime.

Different renditions must update in sync, to within 1 part-target duration.

HTTP caches used for delivery of Low-Latency HLS must set the Age HTTP
Response header.

Revisions to Existing Media Authoring Rules for
Low-Latency HLS Streams
Media Playlists must have EXT-PROGRAM-DATE-TIME tags. This allows more
precise mapping between segments across renditions. (Note that real-time clocks

	

	

are NOT required to be synchronized between client and server). The
recommended 6s target duration still applies. The recommended GOP size is 1-2s.
Smaller GOPs support faster switching between renditions.

Example: Low-Latency HLS Playlist
#EXTM3U
This playlist is a response to: GET
https://example.com/2M/waitForMSN.php?_HLS_msn=273&_HLS_part=2
#EXT-X-TARGETDURATION:4
#EXT-X-VERSION:6
#EXT-X-SERVER-CONTROL:CAN-BLOCK-RELOAD=YES,PART-HOLD-BACK=1.0,CAN-
SKIP-UNTIL=12.0
#EXT-X-PART-INF:PART-TARGET=0.33334
#EXT-X-MEDIA-SEQUENCE:266
#EXT-X-PROGRAM-DATE-TIME:2019-02-14T02:13:36.106Z
#EXT-X-MAP:URI="init.mp4"
#EXTINF:4.00008,
fileSequence266.mp4
#EXTINF:4.00008,
fileSequence267.mp4
#EXTINF:4.00008,
fileSequence268.mp4
#EXTINF:4.00008,
fileSequence269.mp4
#EXTINF:4.00008,
fileSequence270.mp4
#EXT-X-PART:DURATION=0.33334,URI="filePart271.0.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.1.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.2.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.3.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.4.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart271.5.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.6.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.7.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.8.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart271.9.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.10.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.11.mp4"
#EXTINF:4.00008,
fileSequence271.mp4
#EXT-X-PROGRAM-DATE-TIME:2019-02-14T02:14:00.106Z
#EXT-X-PART:DURATION=0.33334,URI="filePart272.a.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.b.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.c.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.d.mp4"

Deleted: &_HLS_report=../1M/waitForMSN.php
&_HLS_report=../4M/waitForMSN.php

Deleted: 3

Deleted:
Deleted: ts
Deleted:
Deleted: ts
Deleted:
Deleted: ts
Deleted:
Deleted: ts
Deleted:
Deleted: ts
Deleted:
Deleted: ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: Part
Deleted: .ts
Deleted: .ts
Deleted: 13
Deleted: 60
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts

	

	

#EXT-X-PART:DURATION=0.33334,URI="filePart272.e.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.f.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart272.g.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.h.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.i.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.j.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.k.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.l.mp4"
#EXTINF:4.00008,
fileSequence272.mp4
#EXT-X-PART:DURATION=0.33334,URI="filePart273.0.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart273.1.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart273.2.mp4"
#EXT-X-PRELOAD-HINT:TYPE=PART,URI="filePart273.3.mp4"

#EXT-X-RENDITION-REPORT:URI="../1M/waitForMSN.php",LAST-
MSN=273,LAST-PART=2
#EXT-X-RENDITION-REPORT:URI="../4M/waitForMSN.php",LAST-
MSN=273,LAST-PART=1

Example: Playlist Delta Update
#EXTM3U
Following the example above, this playlist is a response to: GET
https://example.com/2M/waitForMSN.php?_HLS_msn=273&_HLS_part=3
&_HLS_skip=YES
#EXT-X-TARGETDURATION:4
#EXT-X-VERSION:9
#EXT-X-SERVER-CONTROL:CAN-BLOCK-RELOAD=YES,PART-HOLD-BACK=1.0,CAN-
SKIP-UNTIL=12.0
#EXT-X-PART-INF:PART-TARGET=0.33334
#EXT-X-MEDIA-SEQUENCE:266
#EXT-X-SKIP:SKIPPED-SEGMENTS=3
#EXTINF:4.00008,
fileSequence269.mp4
#EXTINF:4.00008,
fileSequence270.mp4
#EXT-X-PART:DURATION=0.33334,URI="filePart271.0.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.1.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.2.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.3.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.4.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart271.5.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.6.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.7.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.8.mp4",INDEPENDENT=YES

Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts

Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Formatted: Font color: R,G,B (209,47,27)

Deleted: &_HLS_report=../1M/waitForMSN.php
&_HLS_report=../4M/waitForMSN.php

Deleted: .ts

Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts

	

	

#EXT-X-PART:DURATION=0.33334,URI="filePart271.9.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.10.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart271.11.mp4"
#EXTINF:4.00008,
fileSequence271.mp4
#EXT-X-PROGRAM-DATE-TIME:2019-02-14T02:14:00.106Z
#EXT-X-PART:DURATION=0.33334,URI="filePart272.a.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.b.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.c.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.d.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.e.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.f.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart272.g.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.h.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.i.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.j.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.k.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart272.l.mp4"
#EXTINF:4.00008,
fileSequence272.mp4
#EXT-X-PART:DURATION=0.33334,URI="filePart273.0.mp4",INDEPENDENT=YES
#EXT-X-PART:DURATION=0.33334,URI="filePart273.1.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart273.2.mp4"
#EXT-X-PART:DURATION=0.33334,URI="filePart273.3.mp4"
#EXT-X-PRELOAD-HINT:TYPE=PART,URI="filePart273.4.mp4"

#EXT-X-RENDITION-REPORT:URI="../1M/waitForMSN.php",LAST-
MSN=273,LAST-PART=3
#EXT-X-RENDITION-REPORT:URI="../4M/waitForMSN.php",LAST-
MSN=273,LAST-PART=3

Example: Byterange-addressed Parts
In these examples only the end of the Playlist is shown.
This is Playlist update 1
#EXTINF:4.08,
fs270.mp4
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=20000@0
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=23000@20000
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=18000@43000
#EXT-X-PRELOAD-HINT:TYPE=PART,URI="fs271.mp4",BYTERANGE-START=61000

This is Playlist update 2
#EXTINF:4.08,
fs270.mp4
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=20000@0
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=23000@20000

Deleted: .ts
Deleted: .ts
Deleted: .ts

Deleted: .ts
Deleted: 13
Deleted: 60
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts
Deleted: .ts

	

	

#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=18000@43000
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=19000@61000
#EXTINF:4.08,
fs271.mp4
#EXT-X-PRELOAD-HINT:TYPE=PART,URI="fs272.mp4",BYTERANGE-START=0

This is Playlist update 3
#EXTINF:4.08,
fs270.mp4
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=20000@0
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=23000@20000
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=18000@43000
#EXT-X-PART:DURATION=1.02,URI="fs271.mp4",BYTERANGE=19000@61000
#EXTINF:4.08,
fs271.mp4
#EXT-X-PART:DURATION=1.02,URI="fs272.mp4",BYTERANGE=21000@0
#EXT-X-PRELOAD-HINT:TYPE=PART,URI="fs272.mp4",BYTERANGE-START=21000

Appendix A: CDN Tune-In
Players and other clients of Low-Latency HLS should expect delivery of low-latency
streams through CDNs and other HTTP caches. To correctly implement the server-
recommended playback distance from the live feed, PART-HOLD-BACK, the client
must first obtain a reasonably up-to-date version of the Media Playlist.

There are various approaches that a client may take to obtain a recent version of a
Media Playlist. The following algorithm typically rquires two GET requests to obtain
a Playlist that’s within one part target duration of the current Playlist:

1. Send a request for the Media Playlist that doesn’t include
an _HLS_msn or _HLS_partparameter.

2. Record the first Playlist response, including its received time and Age header.
If there’s no Age header in the first Playlist response, consider the Playlist to
be up to date.

3. If there’s an Age header in the first Playlist response, set
the goalDuration to match the Age value. Add 1 second to
the goalDuration value if the part target duration is less than 1.0.

While the Age value is greater than or equal to the floor of the part target duration:
1. Set currentGoal to be the goalDuration plus the amount of time since

the first Playlist response.
2. If the current version of the Playlist has at least currentGoal more media

in it than the first Playlist, consider the current Playlist to be up to date.

	

	

3. Use the target duration and the part target duration to estimate how many
more segments and parts the server will add to the Playlist to contribute at
least currentGoal more media to it.

4. Request the Media Playlist again, using
the _HLS_msn and _HLS_part parameters to obtain the Playlist that has
the estimated additional duration of media since the first Playlist.

5. Update the current Playlist and the Age value from the Playlist response.

Revision History
The following table describes the changes to the Protocol Extension for Low-
Latency HLS (Preliminary Specification).
Date Notes

2019/12/22 Replaced the use of HTTP/2 Push with EXT-X-PRELOAD-HINT. Switched
examples to mp4. Added byte range example.

2019/08/22 Removed the _HLS_report parameter and made Rendition Reports mandatory.
Clarified the LAST-MSN definition.

2019/07/25 Added the CDN Tune-in appendix.

2019/07/10
Updated MSN and part validation rules. Made server response recommended instead
of mandatory. Added the requirement of the AGE header when using HTTP proxy
caches.

2019/06/03 New document describing the low-latency HTTP Live Streaming.
	

